Vous vous intéressez à votre empreinte environnementale, vous devez établir un rapport environnemental ou soumettre une feuille de route de décarbonation ? Quel est le potentiel de l’économie circulaire pour votre entreprise ?
Grâce à cette brève liste de questions, vous découvrirez quelle offre correspond aux besoins de votre entreprise.
27.07.2023
L’ordonnance révisée sur le CO2 est entrée en vigueur avec effet rétroactif au 1er janvier de cette année. Grâce à l’expérience et à l’expertise des 150 conseillers et conseillères AEnEC, les entreprises continuent d’être accompagnées tout au long de leur démarche de mise en œuvre.
Le 2 avril 2025, l’OFEV informait de l’entrée en vigueur de l’ordonnance révisée sur le CO2 avec effet rétroactif au 1er janvier 2025. Cette révision, qui a un impact direct sur les engagements de réduction (exemption de la taxe sur le CO2) des entreprises pour la période 2025-2040, leur offre une sécurité pour la planification de leurs investissements dans de nouvelles mesures de décarbonation.
L’AEnEC continue de se mettre au service d’une mise en œuvre pratique et favorable à l’économie et vous soutient activement dans la réalisation de vos objectifs climatiques. Avez-vous des questions ? Votre conseiller ou conseillère vous répond avec plaisir, de même que notre secrétariat central.
22.04.2025
Vous trouvez toutes les informations sur l’exemption de la taxe sur le CO2 obtenue grâce à un engagement de réduction en suivant ce lien :
Plusieurs modifications législatives issues de l’initiative parlementaire « Développer l’économie circulaire en Suisse » sont entrées en vigueur en début d’année. Ces nouvelles dispositions posent les bases nécessaires pour fermer les cycles des matériaux et renforcer l’économie circulaire dans les domaines des produits et de la construction.
Exemples dans les domaines des produits et des déchets :
L’AEnEC a lancé l’offre « Gestion efficace des ressources » il y a quelques années déjà. Notre offre inclut la mise en évidence des potentiels de l’entreprise, la formulation d’objectifs et l’élaboration de mesures d’amélioration qui conduisent par étapes à un emploi plus durable des ressources dans toute la chaîne d’approvisionnement.
En adoptant cette démarche, votre entreprise peut économiser des matières et des coûts, mais aussi réduire ses déchets et ses émissions de gaz à effet de serre (GES) en augmentant par exemple son taux de recyclage. Cette offre permet aussi à votre entreprise ou à un groupe d’entreprises de dresser un bilan des gaz à effet de serre selon le protocole GES ainsi qu’un écobilan. Les principaux facteurs d’influence du Scope 3 sont également identifiés dans ce cadre.
L’AEnEC élabore avec votre entreprise une liste de mesure d’amélioration. L’effet de chaque mesure est estimé pour les matières, l’énergie, les émissions de gaz à effet de serre notamment. Cette analyse permet aussi de prévoir l’évolution dans le temps des principaux impacts avec une mise en œuvre systématique des mesures. Les indicateurs spécifiques de l’AEnEC renseignent sur l’utilisation des matières, le taux de recyclage et l’amélioration générale de la gestion des ressources. Le suivi annuel présente l’effet des mesures d’amélioration mises en œuvre.
Grâce à l’offre « Gestion efficace des ressources », votre entreprise fait face aisément aux questions de sa clientèle dans le domaine : elle dispose en effet des réponses utiles dans le domaine de l’environnement et des émissions de gaz à effet de serre. De plus, elle peut élaborer de futurs modèles d’affaires qui intègrent l’économie circulaire. L’environnement comme votre entreprise sont gagnants.
Au début 2025, trois modifications législatives importantes pour les entreprises entreront simultanément en vigueur.
Il s’agit premièrement de la Loi Climat et Innovation, approuvée en votation en juin 2023. Ce texte vise le zéro net, y compris pour l’industrie, et il prévoit un soutien à l’investissement de 200 millions par année pendant six ans pour les projets innovants.
En deuxième lieu, la loi sur le CO2 a été révisée. Désormais, les petites entreprises peuvent aussi demander le remboursement de la taxe sur le CO2 en prenant un engagement de réduction. Ce texte prévoit également des soutiens à la production de gaz renouvelable à partir de surplus d’électricité.
Enfin, le troisième dispositif légal est la loi relative à un approvisionnement en électricité sûr approuvée par le peuple le 9 juin 2024, qui a pour objectif le renforcement massif de la production d’électricité renouvelable et l’amélioration du stockage.
Exigeant, ce nouveau cadre légal offre d’incroyables opportunités d’innovation pour les entreprises. Il convient en particulier de tirer parti des synergies possibles entre la décarbonation de l’industrie et l’approvisionnement électrique hivernal.
Pour l’industrie, le volet le plus difficile à décarboner est celui de la haute température. En effet, jusqu’à 100°, voire bientôt 150°, il est tout à fait possible de produire de la chaleur avec des pompes à chaleur économes en électricité ou de la récupération. En revanche, au-delà de 150°, un segment qui représente environ 70% de la consommation de chaleur de l’industrie, il faut en général soit du combustible, soit de l’électricité directement convertie en chaleur. Cela implique, en tout cas partiellement, de disposer de gaz climatiquement neutre. Or, à grande échelle, le biogaz ne suffira pas. Il convient donc miser sur les gaz de synthèse produits à base d’électricité.
Techniquement, il est possible d’utiliser les surplus d’électricité solaires et hydroélectriques de l’été pour produire de l’hydrogène ou du méthane climatiquement neutre, puis de stocker ces gaz afin de produire de l’électricité en hiver. Cette stratégie présente cependant un défaut majeur : la conversion de l’électricité en gaz de synthèse induit des pertes importantes de l’ordre de 30 à 50 %. Ensuite, la reconversion de ce gaz en électricité induit de nouvelles pertes. Avec ces technologies, il faut environ 3 kWh estivaux pour obtenir 1 kWh hivernal. La double conversion induit donc des déperditions considérables.
Dans la partie VI de mon ouvrage (voir bio ci-après), je propose une autre stratégie : dimensionner la production solaire, éolienne et hydraulique pour disposer de suffisamment d’électricité en hiver. Et utiliser les surplus estivaux pour obtenir du gaz de synthèse destiné en priorité à l’industrie, ce qui évite les pertes inhérentes à la reconversion du gaz renouvelable en électricité. En abordant conjointement les deux problèmes, nous obtenons une meilleure efficacité globale.
Grâce au nouveau cadre législatif, ce scénario peut désormais devenir une réalité tangible. On entre en phase de réalisation, et que le meilleur gagne !
L’auteur
Conseiller national et membre de la CEATE-N, Roger Nordmann est aussi membre du Conseil d’administration de Groupe e SA et préside celui de Planair SA.
Il est actif comme consultant indépendant et a publié «Urgence énergie et climat – investir pour une transition rapide et juste » (Favre, 2023, offre spéciale pour les lecteurs/lectrices de Fokus : https://rogernordmann.ch/livre-avec-rabais/)
Dans les modèles développés par l’Energy Science Center de l’EPFZ, on ne trouvera pas d’utilisation de l’hydrogène suisse dans la production de chaleur industrielle. En revanche, les combustibles solides et l’électricité notamment sont appelés à remplir ce rôle, surtout pour les températures élevées.
Pour parvenir à une réduction des émissions de gaz à effet de serre à zéro net, il faut également trouver des solutions pour les secteurs pour lesquels il n’est guère possible de renoncer à des agents énergétiques chimiques. Outre le trafic aérien, l’industrie est concernée, notamment en ce qui concerne la production de chaleur industrielle à haute température.
Actuellement, 32 % – soit 12 térawattheures (TWh) par an – environ de l’énergie nécessaire à l’industrie suisse sont couverts par les combustibles fossiles (OFEN, 2023 ; tableau 4). Ce secteur représente 23 % du total des émissions suisses de CO2 (OFEV, 2022). En partenariat avec d’autres institutions suisses, une équipe de l’Energy Science Center de l’EPFZ, analyse dans le cadre du projet SWEET DeCarbCH comment réduire ces émissions. Le projet s’appuie notamment sur la modélisation du système énergétique suisse dans son ensemble, pour déterminer quels sont les combustibles et les technologies qui permettront la production de la chaleur industrielle nécessaire à l’industrie.
Nos modèles actuels partent du principe que la consommation finale de chaleur industrielle restera dans les grandes lignes au niveau actuel de 20 TWh par an en 2050. Le choix des technologies à employer pour produire cette chaleur dépend de la température des procédés nécessaire, et bien évidemment de la capacité concurrentielle de la technologie en question. Les procédés industriels requièrent des températures variées, qui vont de 80 °C à bien au-delà de 1000 °C pour la fabrication de ciment. Déterminer avec précision la température à laquelle correspond effectivement le besoin de chaleur industrielle s’est avéré difficile. Pour la modélisation actuelle, par simplification, nous avons donc défini une répartition de la consommation finale (fabrication de ciment non comprise) dans trois plages de température comme suit : 25 % pour les températures inférieures à 100 °C, 25 % pour les températures comprises entre 100 et 200 °C et 50 % pour les températures de plus de 200 °C.
Le solaire thermique et la géothermie en profondeur sont des technologies adaptées aux températures inférieures à 100 °C. Pour atteindre les températures recherchées dans la plage moyenne, entre 100 et 200 °C, ces deux sources peuvent être complétées par une pompe à chaleur industrielle. Autre possibilité, des installations de couplage chaleur-force (installations CCF) pourront produire la vapeur nécessaire aux procédés.
Les procédés à haute température (plus de 200 °C) exigent des procédés de combustion ou encore des chauffages à résistance qui convertissent l’électricité directement en chaleur. Pour la production de ciment, seuls des procédés de combustion sont envisageables. Les combustibles disponibles pour ce faire sont surtout des gaz (méthane, hydrogène), des liquides (mazout) et des solides (déchets, bois, boues d’épuration, charbon).
L’équipe de l’EPFZ a calculé un grand nombre de scénarios pour chercher des solutions permettant de fournir de la chaleur industrielle dans une démarche zéro net (illustration 1). Nous avons défini les scénarios sur la base de trois éléments : la valeur cible des émissions de CO2 autorisées (axe des x : de 24 mégatonnes à zéro tonne de CO2 par an) ; le lien Suisse – Europe (ensemble – seule), et le degré d’intégration des innovations – la géothermie par exemple – (conservateur – innovant).
L’illustration ci-dessus présente la chaleur industrielle produite en 2050. Les trois plages de température mentionnées sont additionnées et réparties selon les différentes sources de chaleur. On observe d’abord que les différentes sources sont présentes dans des proportions relativement égales les unes aux autres ; en d’autres termes, il n’existe pas de source qui dominerait sans équivoque. Lorsque les objectifs fixés pour le CO2 sont élevés – là où des émissions de CO2 d’origine fossile sont encore autorisées –, il existe une forte proportion de combustibles gazeux, pour la plupart du méthane d’origine fossile. Sur la voie du zéro émission net, on observe un passage aux combustibles solides (déchets et bois) et à l’électricité. Lorsque la géothermie est disponible dans les scénarios innovants, elle fournit une quantité de chaleur considérable dans la plage de température basse (inférieure à 100 °C). Dans les scénarios conservateurs dans lesquels l’option de la géothermie n’entre pas en ligne de compte, ce rôle est assumé par le solaire thermique.
La catégorie des combustibles gazeux fournit encore cinq térawattheures par an dans un scénario zéro net ; la proportion d’hydrogène est extrêmement faible, la source la plus importante étant le méthane, qu’il s’agisse de gaz naturel importé d’origine fossile ou de biométhane. La disponibilité du biométhane est toutefois tributaire d’une forte augmentation de l’utilisation de lisier dans la production de biogaz. La faible proportion de l’hydrogène s’explique notamment par le fait que l’utilisation d’électrolyse suivie d’une combustion demande nettement plus d’électricité que lorsque l’électricité est utilisée directement dans un chauffage à résistance.
Mis ensemble, ces résultats indiquent que l’hydrogène suisse jouera un rôle faible dans les applications industrielles à haute température. Ce résultat dépend surtout de la disponibilité d’options alternatives. Mais il est aussi nécessaire que des agents énergétiques chimiques suisses comme le biométhane, le bois ou les déchets soient employés avant tout pour des applications à haute température et non pas pour la production de chaleur ambiante ou d’eau industrielle. L’hydrogène importé pourrait toutefois constituer une option concurrentielle à l’avenir ; il reste toutefois à voir comment l’Europe développera son infrastructure à hydrogène et dans quelle mesure la Suisse pourra se raccorder à ce réseau.
Références
Les auteurs
Rebecca Lordan-Perret est Scientific Outreach Manager de l’Energy Science Center (ESC) de l’EPFZ.
Gianfranco Guidati est directeur adjoint de l’Energy Science Center (ESC) de l’EPFZ.
Fondée il y a plus d’un siècle, Mikron Machining SA est aujourd’hui leader mondial de l’assemblage de machines industrielles ultraprécises, destinées par exemple à la fabrication de composants horlogers, ou de pointes de stylos à bille, pour lesquelles elle détient plus de 95 % du marché mondial. Comment associer la fabrication de machines industrielles ultraprécises avec l’amélioration de son bilan énergétique ? Pour le savoir, nous avons rencontré Bruno Jöhl, chef Supply Chain Division Machining, au siège d’Agno (TI).
La société Mikron Machining SA, qui fait partie du groupe Mikron, compte actuellement environ 400 collaborateurs (sur un total de 1300) et produit des machines industrielles.
Lorenzo Medici et Bruno Jöhl.
Bruno Jöhl.
Le siège de Mikron Machining SA est situé à Agno (TI), au bord du lac de Lugano. Alors que les grands palmiers qui en ornent l’entrée sont évocateurs de détente, les collaborateurs et collaboratrices sont concentrés sur les machines capables de fabriquer des pièces au millième de millimètre près, soit avec une précision équivalente à une fraction du diamètre d’un cheveu. Produites à plus de 145 millions d’exemplaires par jour, les têtes de stylos à bille ont fait la renommée de l’entreprise : plus de 95 % de celles rangées dans les tiroirs et les mallettes aux quatre coins de la planète sont produites avec une technologie qui provient du Tessin. Bruno Jöhl présente avec fierté le tapis roulant qui fait circuler des machines toutes capables de fabriquer plus de 28 000 pointes de stylos à l’heure.
Mikron Machining SA s’engage depuis plus de trente ans dans l’amélioration de son impact environnemental. Elle est l’une des sept entreprises pionnières du Tessin qui a conclu une convention d’objectifs volontaire en 1996 déjà, bien avant l’introduction de dispositions légales contraignantes. Depuis, son engagement pour améliorer son bilan énergétique n’a pas faibli : en 2003, elle conclut sa première convention d’objectifs avec l’Agence de l’énergie pour l’économie (AEnEC) et en 2013, après une nouvelle convention d’objectifs volontaire, elle élabore une stratégie qui débouche sur une rénovation intégrale de ses bâtiments. Grâce à cette rénovation, qui englobe de nouvelles fenêtres, l’isolation du bâtiment, des LED pour l’éclairage et un nouveau système de chauffage, refroidissement et ventilation, Mikron a diminué sa consommation d’énergie par deux tout en réduisant ses émissions de CO2 de plus de 100 tonnes par an. La ventilation a représenté un élément crucial : maintenir une température constante de 20 °C dans une surface industrielle de 6000 m2 demande un système complexe qui chauffe en hiver et refroidit en été. Grâce à une installation de climatisation qui fonctionne au moyen d’une pompe à chaleur en exploitant les rejets de chaleur du processus de production, Mikron Machining SA a réduit ses émissions de CO2 de 130 tonnes par an et sa consommation de mazout de 50 000 litres par an.
« La rénovation énergétique et la diminution de la surface ont représenté des étapes décisives », relate Bruno Jöhl durant la visite de la nouvelle zone dédiée à la production de pièces destinées à être utilisées par l’entreprise-même. « Nous avons réduit notre surface en la faisant passer de 4000 m2 à 2000 m2 environ tout en gardant les mêmes capacités de production. Cette réduction nous a permis d’économiser jusqu’à 5000 litres de mazout par mois durant l’hiver. » Au plafond, nous remarquons le nouvel éclairage. Il est lui aussi synonyme d’économies d’énergie et de réduction des coûts : grâce au remplacement d’un millier de tubes fluorescents par des éclairages LED de la dernière génération, « nous estimons les économies à 120 000 kWh par an », se réjouit Lorenzo Medici, conseiller AEnEC. « Chauffer et éclairer des espaces vides est clairement un luxe énergétique que nous ne pouvons plus nous permettre. »
L’optimisation des processus de production constitue une part essentielle de la stratégie de réduction de la consommation énergétique. « Lorsque l‘on produit des millions de pièces, toute modification, aussi modeste soit-elle, peut faire une grande différence », explique Bruno Jöhl. L’équipe de Mikron Machining SA s’efforce donc en permanence d’optimiser le cycle de production en intégrant plusieurs facteurs, dont la performance énergétique des machines et l’amélioration des outils. Ces adaptations contribuent, en termes de durabilité, à réduire l’impact environnemental des machines produites par Mikron Machining SA y compris lorsqu’elles sont employées par les clients de l’entreprise tessinoise. Ce principe vaut d’ailleurs non seulement pour les nouvelles machines, mais aussi pour les plus anciennes. « Certaines de nos machines ont plus d’un demi-siècle et elles fonctionnent encore parfaitement », relate Bruno Jöhl. « Au lieu d’en installer de nouvelles, nous réparons celles qui sont en place et nous améliorons leur performance énergétique, ce qui évite de les remplacer. » Autrement dit, un bonne façon de ménager de précieuses ressources consiste à offrir une seconde vie à des machines et des outils conçus à une époque où les normes énergétiques différaient fortement de celles d’aujourd’hui.
L’engagement qu’a pris Mikron en faveur de l’environnement en réduisant sa consommation d’énergie et ses émissions n’est pas limité aux frontières du pays : le groupe déploie sa politique de durabilité de manière uniforme sur tous ses sites, partout dans le monde. À Agno, le montage d’une installation photovoltaïque sur la toiture est l’une des prochaines étapes qui attendent Mikron Machining SA et les conseillers AEnEC qui accompagnent les travaux. La modernisation de la flotte est également prévue : des véhicules hybrides ou électriques seront employés. Enfin, Mikron entend réduire les émissions indirectes liées à la chaîne logistique de transport de ses fournisseurs. En d’autres termes, Mikron poursuit avec un bel élan sur la voie de la décarbonation.
25.03.2025
Mikron Machining SA Agno
– 66 % de combustibles fossiles
Réductions obtenues entre 2013 et 2023
– 2000 tonnes de CO2
Réduction cumulée des combustibles fossiles obtenue entre 2013 et 2023
– 70 % d’émissions de CO2
Réductions obtenues entre 2013 et 2023 grâce aux rénovations et à l’amélioration de l’efficacité énergétique
145 000 000 par jour, ou 95 % du marché mondial
Nombre des pointes de stylos à bille produites sur des machines développées et fabriquées par Mikron
Mikron Machining SA fait partie du groupe Mikron et emploie 400 collaborateurs et collaboratrices (1300 pour le groupe). L’entreprise fabrique des machines industrielles. Son siège est à Agno (TI) et le groupe a des filiales aux États-Unis, en Allemagne, en Lituanie, en Chine et à Singapour.